Elliptical Symmetry and Characterization of Operator-Stable and Operator Semi-stable Measures
نویسندگان
چکیده
منابع مشابه
Operator geometric stable laws
Operator geometric stable laws are the weak limits of operator normed and centered geometric random sums of independent, identically distributed random vectors. They generalize operator stable laws and geometric stable laws. In this work we characterize operator geometric stable distributions, their divisibility and domains of attraction, and present their application to finance. Operator geome...
متن کاملThe Operator Ν-stable Laws
Operator stable laws are the limits of operator normed and centered sums of independent, identically distributed random vectors. The operator ν-stable laws are the analogous limit distributions for randomized sums. In this paper we characterize operator ν-stable laws and their domains of attraction. We also discuss several applications, including the scaling limits of continuous time random wal...
متن کاملA Characterization of Stable Models using a Non-Monotonic Operator
Stable models seem to be a natural way to describe the beliefs of a rational agent. However , the deenition of stable models itself is not constructive. It is therefore interesting to nd a constructive characterization of stable models, using a xpoint construction. The operator we deene, is based on the work of {among others{ F. Fages. For this operator, every total stable model of a general lo...
متن کاملStable Isomorphism of Dual Operator Spaces
We prove that two dual operator spaces X and Y are stably isomorphic if and only if there exist completely isometric normal representations φ and ψ of X and Y , respectively, and ternary rings of operators M1,M2 such that φ(X) = [M ∗ 2 ψ(Y )M1] −w ∗ and ψ(Y ) = [M2φ(X)M ∗ 1 ]. We prove that this is equivalent to certain canonical dual operator algebras associated with the operator spaces being ...
متن کاملStable Classes and Operator Pairs for Disjunctive Programs
Baral and Subrahmanian introduced the notion of stable classes for normal logic programs. In contrast to stable models stable classes always exist and can be given a constructive characterization. We generalize the Baral-Subrahmanian approach to disjunctive programs and propose mf-stable classes for diierent functions mf. Such mf-stable classes always exist and are sound with respect to stable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1984
ISSN: 0091-1798
DOI: 10.1214/aop/1176993151